

[Insert Date]
[Insert Location]

Developing markets. >> Enabling trade. >> Improving lives.

U.S. Grains Council

Mission

Developing markets, enabling trade, improving lives

Reports

- Help buyers make better informed decisions
- Increase confidence in the capacity and reliability of the market
- Assist nations around the world in achieving food security through trade

U.S. Grains Council

Committed to global food security and mutual economic benefit through trade

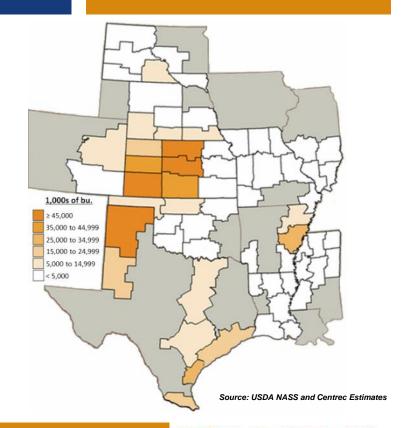
- Excellence in Exports
- Growing the value of trade
- Promoting food security and economic growth
- Adding valuable expertise
- Nurturing reliable trade policies

Sorghum Quality Reports

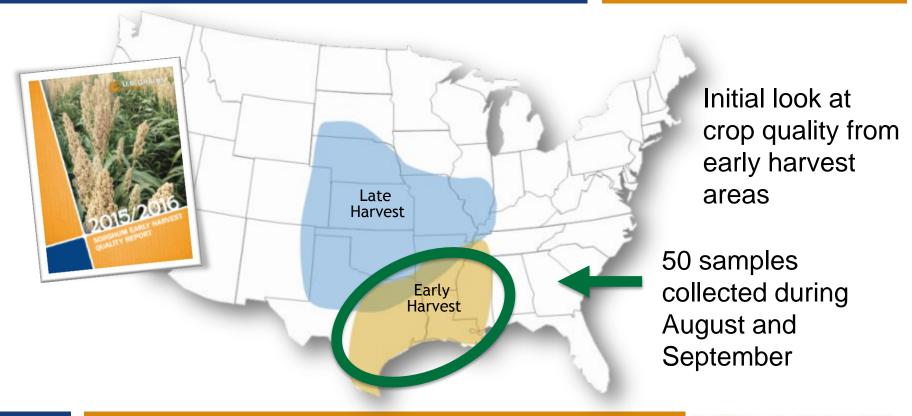
Motivation

- Lack of information on quality of U.S. sorghum
- Growth of U.S. sorghum exports
- Success of USGC Corn Quality Reports

Objective


- To provide information proactively on the U.S. sorghum crop to international buyers
 - Harvest
 - Early exports

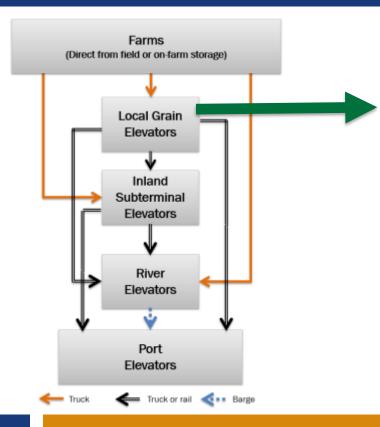
U.S. Production by ASD (2015P)


The geographic areas included in the Harvest sampling area include the highest sorghum-producing regions in the United States

This map represents projected 2015 sorghum production by USDA Agricultural Statistical District (ASD) and was used to allocate the 2015 sampling

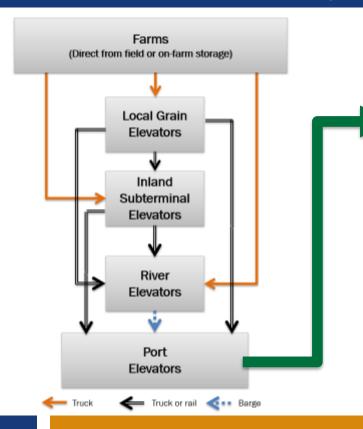


Early Harvest Quality Report



Harvest and Export Cargo Report

USGC Quality Sampling



Harvest Sampling

- Initial levels and variability of quality characteristics across the diverse geographic regions
- Inbound, unblended commodity samples from local elevators

USGC Quality Sampling

Export Sampling

- Initial levels and variability of early export quality at ports
- Commodity sorghum samples collected by USDA at key export outlets

Quality Factors Tested

Grading Factors

Test weight
Broken kernel/foreign material
Foreign material
Total damage/Heat damage

Physical Factors

Kernel diameter
1000-kernel weight
Kernel volume
True density
Kernel hardness index

Moisture

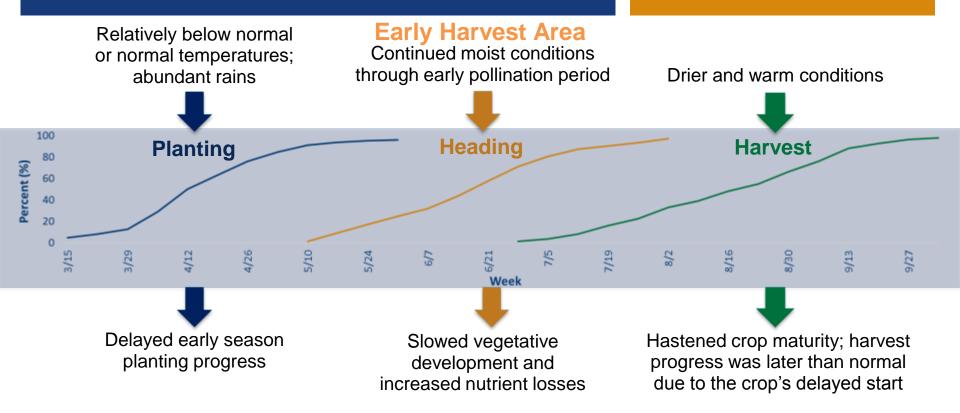
Chemical Composition

Protein

Starch

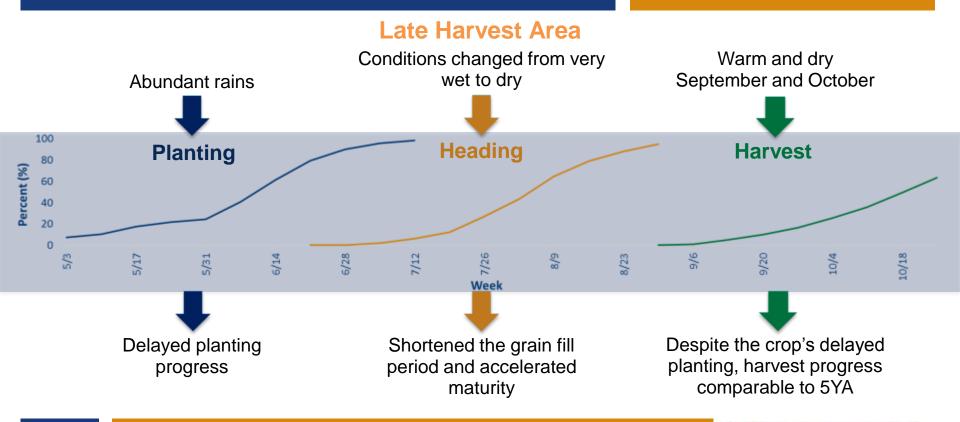
Oil

Tannins


Mycotoxins

Aflatoxins

DON



2015 Growing Conditions and Impact on Crop Development

2015 Growing Conditions and Impact on Crop Development

Harvest 2015 Highlights

Grade Factors

 Average for all factors exceeded criteria for U.S. No. 1 grade

Chemical Composition

- Typical protein, starch, and oil concentrations compared to previous research
- All samples were considered tannin-free

Moisture

 Moisture recorded at the elevator averaged 14.1%

Physical Factors

- On average, U.S. Harvest
 Aggregate had less volume than typical for kernels from any sorghum crop
- Typical kernel diameter, weight, true density and hardness for any commercial sorghum hybrid sample

Harvest 2015 Highlights (cont'd)

Aflatoxins

100% of the samples tested below the FDA action level

DON

All samples tested below the FDA advisory level

Grade Factors and Moisture

Grades and Grade Requirements

		Maximum Limits of				
				Foreign		
	Min. Test			Material	Broken Kernel	
	Weight per	Heat	Total	(part of	and Foreign	
	Bushel	Damaged	Damage	total)	Material	
Grade	(Pounds)	(%)	(%)	(%)	(%)	
U.S. No. 1	57.0	0.2	2.0	1.0	3.0	
U.S. No. 2	55.0	0.5	5.0	2.0	6.0	
U.S. No. 3	53.0	1.0	10.0	3.0	8.0	
U.S. No. 4	51.0	3.0	15.0	4.0	10.0	

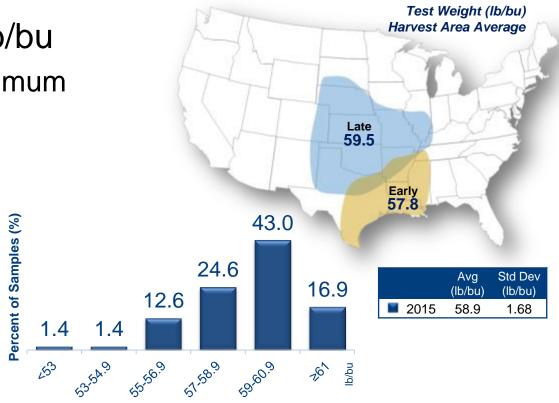
Source: USDA Federal Grain Inspection Service (FGIS)

Grade Factors and Moisture

	No. of		Std.		
	Samples	Avg.	Dev.	Min.	Max.
Test Weight (lb/bu)	207	58.9	1.68	46.1	62.5
Test Weight (kg/hl)	207	75.9	2.16	59.3	80.4
BNFM (%)	207	1.7	0.93	0.0	6.7
Foreign Material (%)	207	0.6	0.41	0.0	4.8
Total Damage (%)	207	0.1	0.13	0.0	5.7
Heat Damage (%)	207	0.0	0.00	0.0	0.0

207

14.1

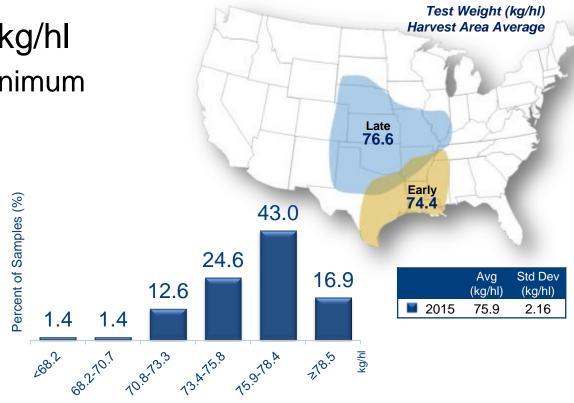


Moisture (%)

Test Weight – U.S. Units

U.S. Aggregate: 58.9 lb/bu

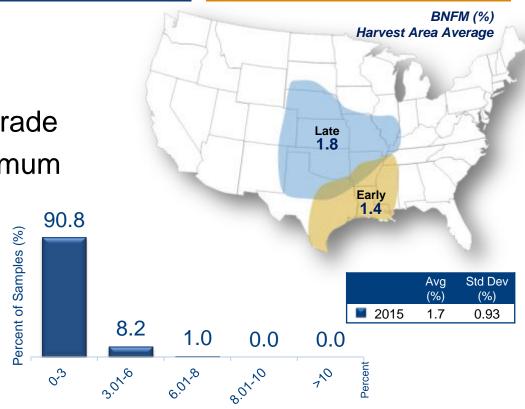
- Average above the minimum for U.S. No. 1 grade
- 97% of the samples at or above the limit for U.S. No. 2 grade
- Late Harvest average slightly higher than Early Harvest average



Test Weight - Metric

U.S. Aggregate: 75.9 kg/hl

- Average above the minimum for U.S. No. 1 grade
- 97% of the samples at or above the limit for U. S. No. 2 grade
- Late Harvest average slightly higher than Early Harvest average

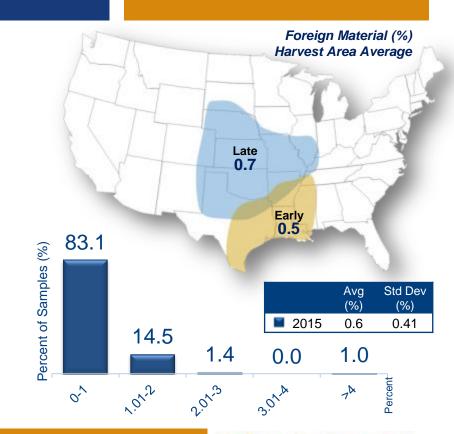

Broken Kernels and Foreign Material (BNFM) (%)

U.S. Aggregate: 1.7%

 Average well below the maximum for U.S. No. 1 grade

 99% were below the maximum for U.S. No. 2 grade

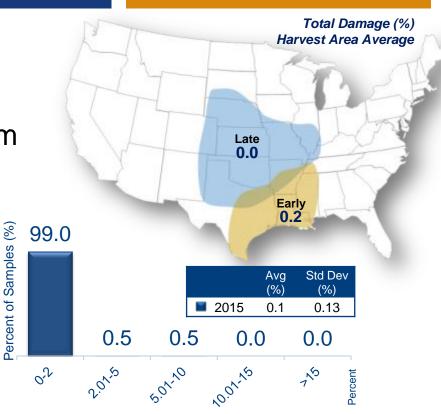
Early Harvest average lower thanLate Harvest average



Foreign Material (%)

U.S. Aggregate: 0.6%

- Average below the maximum for U.S. No. 1 grade
- 98% contained less than the maximum allowable for U.S. No. 2 grade
- Early Harvest average slightly lower than Late Harvest average



Total Damage (%)

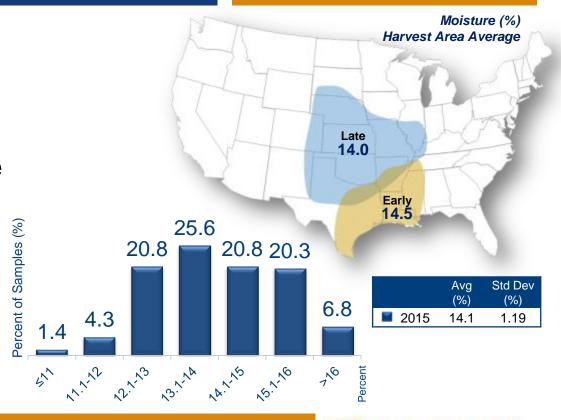
Total Damage U.S. Aggregate: 0.1%

- Average well below the maximum for U.S. No. 1 grade
- 99.5% had less than the maximum allowable for U.S. No. 2 grade
- No damage in Late Harvest samples

Heat Damage (%)

Heat Damage: Zero

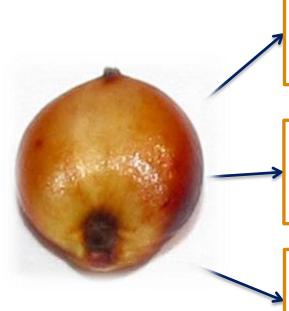
- None observed at harvest
- The absence of heat damage likely was due, in part, to recently-harvested samples coming directly from farm to elevator with minimal prior drying



Moisture (%)

Not a grade factor U.S. Aggregate: 14.1%

- 48% of the samples exceeded 14% moisture
- Drying may have been needed for part of the Harvest crop
- Late Harvest average slightly less than Early Harvest average



Sorghum Chemical Composition

Protein

- Important for poultry and livestock feeding
- Supplies essential amino acids

Starch

 Important source of metabolizable energy and substrates

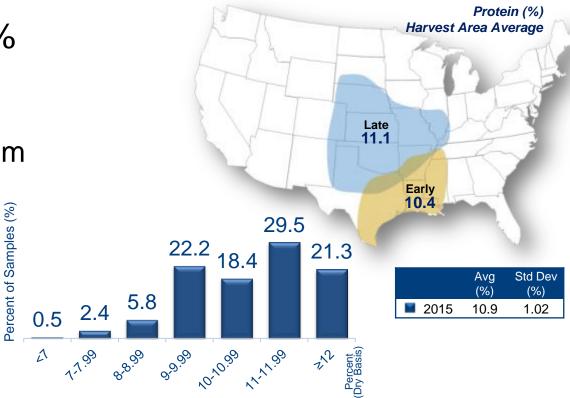
Oil

- Supplies energy and fatty acids
- Important co-product of valueadded processing

Influenced by genetics, crop yields, weather and available nitrogen during the growing season

Influenced by genetics, weather and crop yields

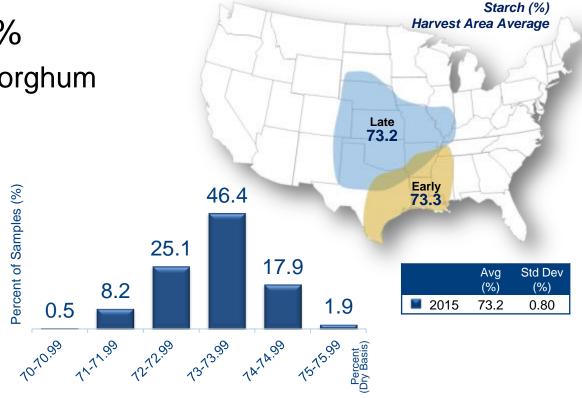
Chemical Composition Factors


	No. of Samples	Avg.	Std. Dev.	Min.	Max.
Protein (Dry Basis %)	207	10.9	1.02	6.8	14.1
Starch (Dry Basis %)	207	73.2	0.80	68.7	75.6
Oil (Dry Basis %)	207	4.5	0.27	3.0	5.1

Protein (Dry basis %)

U.S. Aggregate: 10.9%

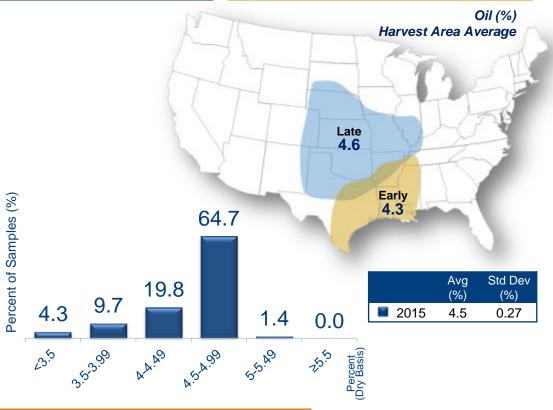
- In the range of typical protein concentration values for U.S. sorghum
- Late Harvest average greater than Early Harvest average



Starch (Dry basis %)

U.S. Aggregate: 73.2%

- Typical level for any sorghum crop
- Late Harvest range (68.7 to 75.6%) greater than Early Harvest range (71.1 to 75.0%)



Oil (Dry basis %)

U.S. Aggregate: 4.5%

- In the range of typical oil concentration values for U.S. sorghum
- Late Harvest average greater than Early Harvest average

Tannins Testing

Quantitative test (levels to indicate presence of tannins) was used instead of qualitative test (Yes or No) for more accurate results.

- Values near or below 4.0 mg catechin equivalents (CE) per one g sample by this method generally imply absence of condensed tannins.^{1,2}
- Type III tannin sorghums usually have values greater than 8.0 mg CE/g.

¹Awika, J.M., L.W. Rooney, 2004. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65, 1199-1221.

²Price, Martin L., Van Scoyoc, S., Butler, L.G., 1978. A critical evaluation of vanillin reaction as an assay for tannin sorghum. Journal of Agricultural and Food Chemistry 26, 1214-1218.

Tannins (mg CE/g)

- 100% of all harvest sorghum samples were below the threshold of 4.0 mg CE/g
- All samples were considered tannin-free

Physical Factors – Overview

Related to processing characteristics, storability and potential for breakage

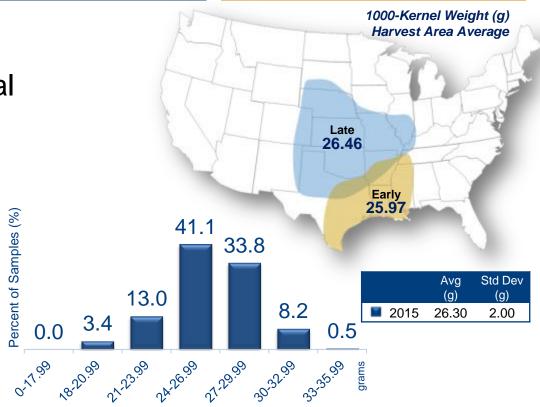
- Kernel weight, volume and density
- Kernel diameter
- Kernel hardness index

Physical Factors

	No. of		Std.		
	Samples	Avg.	Dev.	Min.	Max.
Kernel Diameter (mm)	207	2.53	0.09	2.18	2.90
TKW (g)	207	26.30	2.00	19.49	34.66
Kernel Volume (mm³)	207	19.34	1.44	14.31	25.40
True Density (g/cm ³)	207	1.359	0.013	1.295	1.402
Kernel Hardness Index	207	71.0	6.2	37.1	91.5

Kernel Weight, Volume, Density

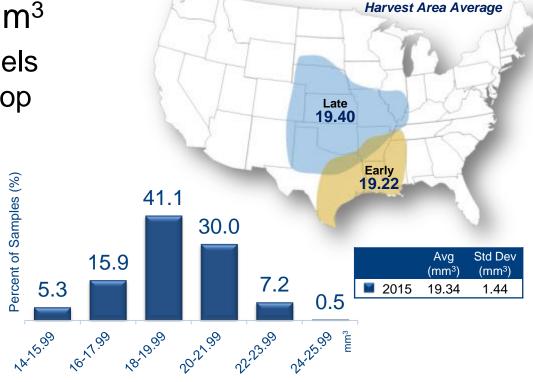
- Measure the size and composition of sorghum kernels
- Kernel volume is indicative of growing conditions and genetics


- True density reflects kernel hardness
- Higher density harder kernels; less susceptible to breakage
- Lower density softer kernels; process well in size reduction; good for feed use

1000-kernel Weight (TKW) (g)

U.S. Aggregate: 26.30 g

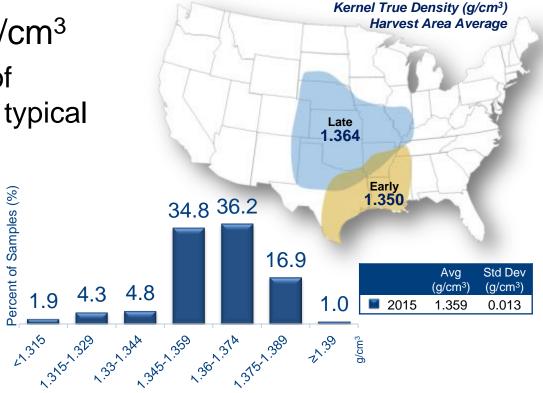
- Within the range of typical levels for U.S. sorghum
- Late Harvest average slightly higher than Early Harvest average



Kernel Volume (mm³)

U.S. Aggregate: 19.34 mm³

- On the lower end for kernels from a typical sorghum crop
- Late Harvest
 average slightly
 higher than
 Early Harvest average



Kernel Volume (mm³)

Kernel True Density (g/cm³)

U.S. Aggregate: 1.359 g/cm³

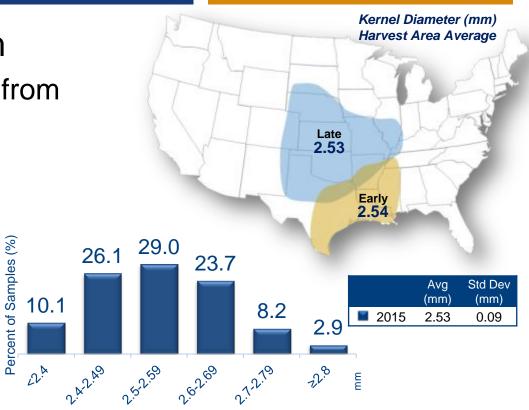
- Within the typical range of values for kernels from a typical sorghum crop
- 71% were
 between 1.345
 and 1.374 g/cm³
- Late Harvest average slightly greater than Early Harvest average

Other Physical Properties

Kernel Diameter

- Directly correlated with kernel volume
- Impacts size reduction behavior and material handling practices
- May indicate maturity of kernel

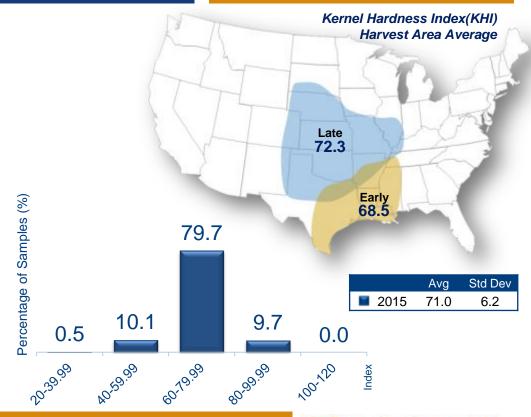
Kernel Hardness Index


- The higher the value, the harder the kernel
- Impacts end-use of sorghum

Kernel Diameter (mm)

U.S. Aggregate: 2.53 mm

- Typical values for kernels from any sorghum crop
- 53% were between2.5 and 2.69 mm
- Late Harvest average about the same as Early Harvest average



Kernel Hardness Index (KHI)

U.S. Aggregate: 71.0

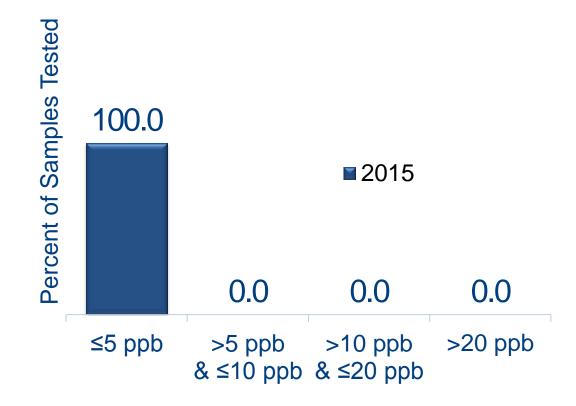
- Average value typical for any sorghum crop
- Almost 80% ranged from 60 to 79.99
- Slightly higher Late
 Harvest average than
 Early Harvest average

Mycotoxin Testing

Sorghum harvest sampling

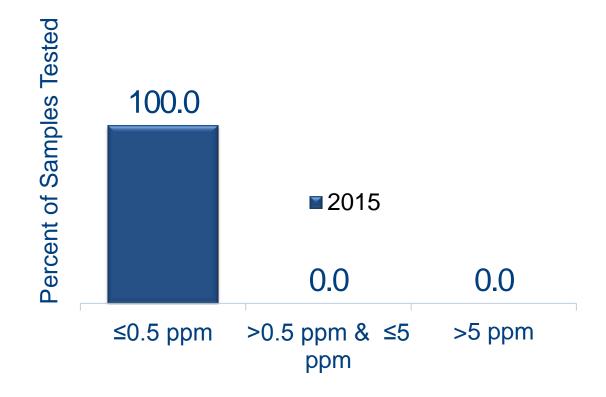
- Shows ONLY the frequency of detection in harvest samples
- Does NOT predict the presence or levels of mycotoxins in U.S. sorghum exports

Tested a minimum of 25% of collected samples


Positive results if above FGIS's "Lower Conformance Limit"

- Aflatoxins: 5.0 ppb
- DON: 0.5 ppm

Aflatoxins Testing Results


- 100% had no detectable levels (≤5 ppb) of aflatoxins
- All samples below the FDA action level of 20 ppb
- Growing season conditions were not conducive to aflatoxin development

DON Testing Results

- 100% had no detectable levels (≤0.5 ppm) of DON
- All samples below the FDA advisory level of 5 ppm
- Growing season conditions were not conducive to DON development

Harvest Quality Conclusions

- 2015 harvest samples were, on average, very good with 94% grading U.S. No. 2 or better
- Average moisture at near optimum level for harvest moisture
- Average composition within the range of reported concentration values for U.S. sorghum hybrids
- Sorghum harvest samples were tannin-free
- Kernel diameter, hardness, weight and true density typical for kernels from any sorghum crop
- Growing season was not conducive to aflatoxin and DON development

Other Features of the Sorghum
Harvest & Export Cargo Quality Report

Other Features of the Report

- Export Quality Test Results
- Crop and Weather Conditions
- U.S. Sorghum Export System
- U.S. Sorghum Production, Usage and Outlook
- Survey and Statistical Analysis Methods
- Testing Analysis Methods

Tool for Better Decision Making

Sorghum Quality

Harvest – impacted by several factors including geography, genetics and weather

Export – affected by many factors in the U.S. grain marketing system, in addition to building on the quality established at harvest

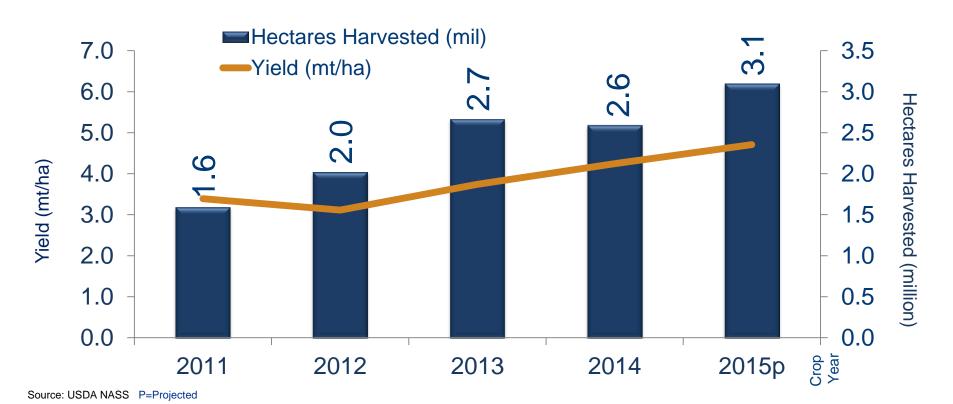
Understanding Quality

Provides information for evaluating patterns in quality across geographies, how weather affects quality, and changes in quality between harvest and export

Report Value

Each year of these reports increases their value; several years of results using the same survey and testing methodology can be compared; patterns in quality and factors that influence quality will surface

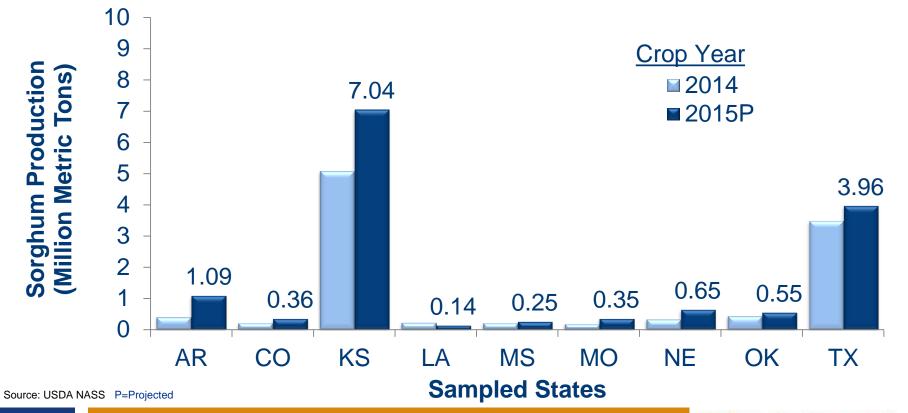
Developing markets. >> Enabling trade. >> Improving lives.



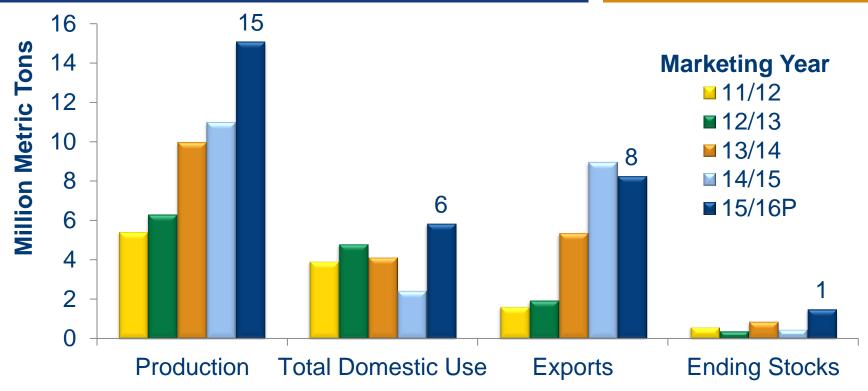
[Insert Date]
[Insert Location]

Developing markets. >> Enabling trade. >> Improving lives.

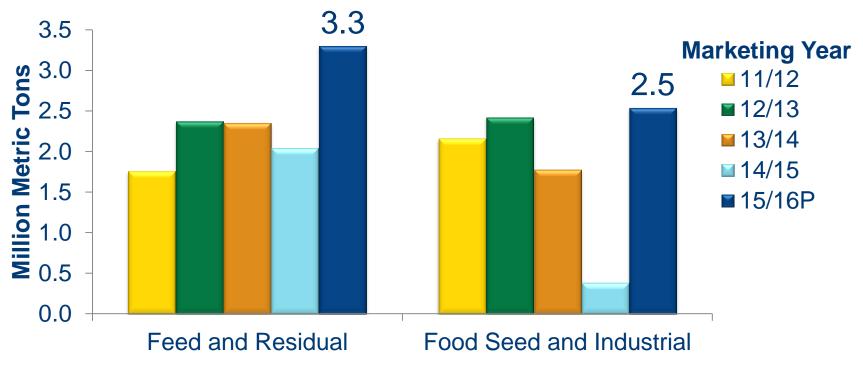
U.S. Sorghum Production and Yield



U.S. Sorghum Production



U.S. Sorghum Production by State


U.S. Sorghum Production and Disappearance

Source: USDA NASS P=Projected

U.S. Sorghum Domestic Sorghum Use

Source: USDA NASS P=Projected

U.S. Sorghum Supply and Usage Summary

	11/12	12/13	13/14	14/15	15/16P	
Acreage (million hectares)		•	•			
Planted	2.2	2.5	3.3	2.9	3.5	
Harvested	1.6	2.0	2.7	2.6	3.1	
Yield (metric ton/hectare)	3.4	3.1	3.7	4.2	4.9	
	In Millions of Metric Tons					
Supply (million metric tons)						
Beginning Stocks	0.7	0.6	0.4	0.9	0.5	
Production	5.4	6.3	10.0	11.0	15.1	
Imports	0.0	0.2	0.0	0.0	0.0	
Total Supply	6.1	7.1	10.4	11.9	15.6	
Usage (million metric tons)						
Food, seed, and industrial use	2.2	2.4	1.8	0.4	2.5	
Feed and residual use	1.8	2.4	2.4	2.0	3.3	
Exports	1.6	1.9	5.4	9.0	8.3	
Total Use	5.5	6.7	9.5	11.4	14.1	
Ending Stocks	0.6	0.4	0.9	0.5	1.5	
Avg farm price (\$/mt*)	235.89	249.12	168.43	158.73	125.98-149.60	

P-Projected

Source: USDA WASDE December 2015

^{*} Farm prices are weighted averages based on volume of farm shipment Average farm price for 15/16P based on WASDE December projected price

U.S. Sorghum Supply and Usage Summary

	11/12	12/13	13/14	14/15	15/16P		
Acreage (million acres)							
Planted	5.5	6.3	8.1	7.1	8.7		
Harvested	3.9	5.0	6.6	6.4	7.6		
Yield (bushels/acre)	54.0	49.6	59.6	67.6	77.7		
	In Millions of Bushels						
Supply (million bushels)							
Beginning Stocks	27	23	15	34	18		
Production	213	248	392	433	594		
Imports	0	10	0	0	2		
Total Supply	241	280	408	467	614		
Usage (million bushels)							
Food, seed, and industrial use	85	95	70	15	100		
Feed and residual use	69	93	93	80	130		
Exports	63	76	211	353	325		
Total Use	218	265	374	449	555		
Ending Stocks	23	15	34	18	59		
Avg farm price (\$/bushel**)	5.99	6.33	4.28	4.03	3.20-3.80		

P-Projected

Source: USDA WASDE December 2015

^{*} Farm prices are weighted averages based on volume of farm shipment Average farm price for 15/16P based on WASDE December projected price